Tag Archives: computer models

A Tropical System For the Gulf To Watch

A tropical wave, designated 90L by the National Hurricane Center, is worthy of being watched by the Gulf Coast states. This system is arguably the first tropical system of real interest to the Gulf states in the U.S., as Tropical Storm Arlene was regarded as a Mexican storm (correctly so) almost from its inception, and Tropical Storms Bret and Cindy were never a threat to any land areas.  However, 90L is in a situation that will strongly favor its reaching the Gulf of Mexico, where conditions are favorable for development.

The system has been steadily increasing its convection over the course of the day, and with this increase has come an improvement in its cyclonic structure.  Cyclonic curvature is evident on satellite (Fig. 1), and upper-level divergence (Fig. 2) indicates good ventilation for the system.  Lower-level convergence (not shown) is not so impressive, indicating that the system needs to form a strong low-level circulation to be considered a tropical cyclone.  This is usually the last step that developing tropical cyclones take.

90L is in a simple steering regime, being located south of the Bermuda High.  In about 3 days, a trough associated with a cyclone is expected to be located off the East Coast of the U.S., eroding the high somewhat.  It was previously assumed that this temporary weakening of the ridge would result in 90L being drawn north for a recurvature.  However, recently, it has become likely that the trough will be weaker than previously believed.  90L is also expected to take longer to develop owing to shear and likely land interaction.  The net result will be a stronger ridge and a weaker tropical system, and the consensus is that 90L will be forced into the Gulf of Mexico (Fig. 3).

90L will have to pass through an area of 20-knot wind shear (Fig. 3, Fig. 4), which is moderate, but will inhibit strengthening for as long as the system is located under that wind regime.  The GFS model does not indicate a sharp spike in wind shear over the course of 90L’s trek toward the Gulf of Mexico.

Unless the expected path drastically changes, 90L should enter the Gulf in about four or five days.  Models are unreliable for storms like this in the long range, and it should be noted that some of the models, like the GFS, are not particularly impressed with this system in the first place.  However, the cyclone-specific model HWRF does develop 90L into a 60 mph tropical storm, keeping it south of Cuba by the end of its run (126 hours out).  For my part, I am disinclined to accept a forecast of zero land interaction at this point.  However, the salient point is that any interaction with Cuba or Hispaniola will have a profoundly negative effect on 90L’s short-term intensity even if it becomes a tropical storm before reaching those areas, and avoiding those landmasses will result in a stronger cyclone that has not been delayed by a reorganization after being disrupted.

My gut forecast for a week or more out (in other words, break out the salt!) is that this system will become a tropical cyclone of moderate intensity (I’ll say Category 1, max, because of mild levels of shear in the Gulf even though the temperatures are well over 90 degrees in many areas) and that it will make landfall somewhere west of Pensacola.  I will have updates about this system if it continues to be a concern.


Figure 1: Shortwave infrared satellite of 90L, late Friday night


Figure 2: Upper-level divergence for 90L, late Friday night


Figure 3: Google Earth overlay of model tracks and shear for 90L, late Friday night


Figure 4: Wind shear tendency, late Friday night

Well, This Is Certainly Interesting

Since I posted last night, the range of possibilities for our coming weather in the Deep South has expanded quite a bit, and the “interesting” scenario that I hinted at towards the end is suddenly looking a lot more likely to actually unfold. I am talking about the possibility that Tropical Depression 19, now upgraded to Richard, gets into the central/east Gulf of Mexico and interacts with one of the coming troughs rather than dissipating in Mexico or extreme south Texas.

The HWRF model, which was alone last night among the well-known models in showing Richard going to the northeast, has been joined now by the GFDL, ECMWF, and the majority of other models, as this Google Earth screencap shows.

The National Hurricane Center has made note of this trend as well and is expecting to move its forecast path to the east if the trends hold up. They tend to err on the side of consistency, avoiding what has been dubbed “the windshield wiper effect” when models make dramatic shifts in their forecasts. But it seems likely right now that they are already leaning in favor of an eastern track for this tropical system. The two storm-centric models, the HWRF and GFDL, turn Richard into a major hurricane and slam it into Florida, but the Google graphic indicates that there is actually quite a wide range of possible landfall locations. If the shear in the Gulf of Mexico drops off as forecast, there is really no reason why a major storm couldn’t happen (though I think there are some limits on just what is possible). Ida last year almost became a major in the Gulf in November during an El Nino autumn, after all.


(No, I do not believe Richard will actually approach Category 5.)

What about our cold-core cyclones, then? And that possible early freeze?

The GFS has (and this should surprise exactly no one) backed off its screwball idea of winter precipitation for Mississippi in the first week of November. As of 06Z’s run, it was not on board with the eastern path for Richard, which throws a major wrench into matters, but let’s look at the evolution of the trough before Richard might enter the picture. If he does get into the east-central Gulf, it’s going to be about a week from now before we can consider a landfall.

The first trough, the one expected to bring rain and thunderstorms to Mississippi on Sunday and Monday, is still on schedule. This model has increased the amount of rainfall that we are apparently going to get out of this, showing up to 2 inches in a small area and widespread totals over 1 inch. This is the trough that would pull Richard up, up, and away, sending it somewhere into the Gulf Coast and adding even more rain. (Remember, the GFS rainfall totals as of this run assume that Richard does not get into this part of the Gulf and is not picked up by this trough.) I’m having a hard time accepting a hurricane of major-plus intensity (let’s say Category 4) in the Gulf in a strong trough situation in late October, though stranger things have happened. It seems likely to me that if this trough gets it, Richard will begin to transition into post-tropical and lose some of its intensity. Cold-core cyclones do not get as strong as tropical cyclones, either in minimum pressure or in wind speeds. (There have been some non-tropical lows that went down to the 920 mb range, but these were at extremely northern latitudes. It’s much less unusual to see sub-980 mb cold lows close to the poles.)

When the energy of a tropical cyclone is entrained into a trough, the trough benefits from it. These types of systems have spawned infamous nor’easters, such as the storm created by the transitioning Hurricane Noel in 2007. The GFS already turns the trough into a 990 mb low and possible nor’easter, and as I said, that run doesn’t even take into account the possibility of tropical-origin vorticity being advected into the dominant low. The South could very easily be in for a major flooding rain event (it is unbelievable that I could realistically use the word “flood” when we are technically in a drought), but if we have the situation of a former major hurricane being pulled into a strong autumn trough, the Northeast could get a monster storm. AccuWeather.com is well-known for hyping weather events, but I think they may be onto something with their current news story about this possible storm. Let’s just say that, while nothing is definite, the potential definitely exists.

The GFS still predicts the first freeze to occur just before Halloween. This freeze would follow the second trough, which would dump even more rain on us. The freeze would be a dry freeze (in other words, a believable one) and the day following it, Halloween, would possibly not lift out of the 50s for highs. This has happened before; I distinctly recall a Halloween in the mid-90s (I am thinking 1993 or 1994) in which it did freeze overnight. After that, the cold air lifts out. As I said before, this model run has dropped the “early November Southern winter storm” foolishness of the third trough it shows.

I am going to be very mindful of the evolution of Richard and the strength of the trough that the NHC and models are increasingly convinced will get it. Things are getting interesting here, folks.

Is a Major Pattern Change On the Way?

After weeks upon weeks of dry weather, we have had two rain events in the past couple of weeks as fronts moved through. The rain has not made a noticeable difference in the drought situation, though it should be noted that we are not under fire weather watches every day anymore.

However, the models are starting to suggest a major pattern shift in the long range. It’s important not to focus on specific details this far out, because quite frankly, some of the details are almost certainly utter rubbish. The idea is that we are shifting into a precipitation-bearing trough pattern at last. The GFS 4-5 days out is showing a fairly robust system of about 1000 mb that is expected to bring rain. Jackson’s NWS office is already talking about this system and has given it a 40% chance of producing thunderstorms on Monday. This is potentially an interesting situation as far as severe weather is concerned, and it seems pretty likely that this particular rain event will play out in some form over the Deep South.

In runs from the past several weeks, the GFS has been indicating, for the most part, a return to dry conditions for as far as the model shows. More recently, it’s stopped doing this. After the Monday event, the GFS shows a potentially more extreme event developing over the 28th—and a freeze.


This image shows the storm event. The freeze would follow.

This is where you start to raise an eyebrow at the output and take it with a grain of salt. This would be early in the year for a first frost, but it has happened before. We’ll need to keep an eye on this and see if it stays in the runs and if other models start to pick up on it.

After the proto-event #2, the GFS then kind of goes off, showing a winter storm situation unfolding. It’s exactly what I mean when I say that the details are not what counts here, but the suggestions of cooler air and more precipitation. This is at the end of the run, which is notoriously poor in accuracy. The blue “0” line represents the freezing point.

As I said, the freeze aspect of this is almost certainly complete foolishness. A third rain event, however, is not out of the question at some point in the two-week range, and such a cyclone could easily pose a winter storm problem for areas along the East Coast, as a nor’easter has already done this year.

We are reaching a time of year when the gates start to close for tropical activity. In part, this is because the jet stream is reforming at a more southerly location. The high wind shear generated by the jet stream is a death knell for tropical activity, but it is encouraging of frontal and cold-core cyclonic development.

Tropical Depression 19
However, tropical storms will continue to form as long as they have the necessary conditions, and as I type this, I see that a new depression has been classified. TD 19 is located in the Caribbean and is forecast to intensify a bit and move over the Yucatan Peninsula. The circulation center of this depression is sheared and somewhat displaced from the main convection, but it seems that the convection and low-level center are moving closer together as the source of the shear moves out. The system is expected to get into the western Gulf. It probably won’t affect the central Gulf states, but it should be noted that the HWRF model explodes this into a major hurricane and sends it into the west coast of Florida. This is currently an outlier, but that is a good model, so it should be watched closely. The Gulf is cooling, but there is definitely enough heat in it to sustain a serious storm. Because of high shear, the Gulf currently cannot host a tropical storm, but the shear is supposed to largely disappear by the time TD 19 emerges from the Yucatan.

It will be interesting to see what type of weather system we get if TD 19 does move farther east and north than expected and the Gulf states get significantly cooler weather. The output of the GFS that shows those rain events does not take into account the possibility of tropical energy entrainment, because it favors a southern path for the tropical depression.

Keep an eye out; things could get interesting.

Drought Conditions Develop

There isn’t much to say about the weather in the Deep South, unfortunately. A cold front is set to move through the region this weekend, dropping temperatures down about 10 degrees again and making the air outside seem truly fall-like. However, it is going to be a dry cold front. Nothing has changed as far as rain is concerned; there is none predicted as far as the forecasts are made. The Weather Service in Jackson has begun issuing fire weather products for the state, and the office out of Birmingham has issued red flag warnings. Burn bans are also in effect for large areas, though it’s highly inadvisable to burn even if you aren’t officially under a ban. It’s hard to believe that within a half a day’s drive, the Carolinas are getting drenched with the rainfall of a trough and the remains of Tropical Storm Nicole entrained into the cyclone, while we in the Deep South are now officially under drought conditions.

With the state as parched as this, it’s reaching a point where we will look anywhere for something that might send us some moisture—or at least, that has not yet been eliminated as a contender for doing that. Out in the tropics, there is a new system in the Central Atlantic, 97L, probably one of the last to develop in places like that this year. However, while the track and development of this system are still very much up in the air, the 12Z GFS doesn’t seem particularly interested in the disturbance. It does, in the two-week range, show a big, wet cold-core cyclone coming through the Southeast and finally ending the drought. I am going to keep an eye on this model and see if it retains this feature; the models are beginning to show some skill in long-range forecasts. And besides, hope springs eternal.